Search results
Results from the WOW.Com Content Network
This means that a CPU cannot simultaneously read an instruction and read or write data from or to the memory. In a computer using the Harvard architecture, the CPU can both read an instruction and perform a data memory access at the same time, [7] even without a cache.
The most common modification builds a memory hierarchy with separate CPU caches for instructions and data at lower levels of the hierarchy. There is a single address space for instructions and data, providing the von Neumann model, but the CPU fetches instructions from the instruction cache and fetches data from the data cache.
Although sharing a similar name, heap files are widely different from in-memory heaps. In-memory heaps are ordered, as opposed to heap files. Simplest and most basic method insert efficient, with new records added at the end of the file, providing chronological order; retrieval efficient when the handle to the memory is the address of the memory
An instruction set architecture (ISA) is an abstract model of a computer, also referred to as computer architecture.A realization of an ISA is called an implementation.An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost (among other things); because the ISA serves as the interface between software and hardware.
A database engine (or storage engine) is the underlying software component that a database management system (DBMS) uses to create, read, update and delete (CRUD) data from a database. Most database management systems include their own application programming interface (API) that allows the user to interact with their underlying engine without ...
This addressing mode, which always fetches data from memory or stores data to memory and then sequentially falls through to execute the next instruction (the effective address points to data), should not be confused with "PC-relative branch" which does not fetch data from or store data to memory, but instead branches to some other instruction ...
The transactional memory could be configured in two modes; the first is an unordered and single-version mode, where a write from one transaction causes a conflict with any transactions reading the same memory address. The second mode is for speculative multithreading, providing an ordered, multi-versioned transactional memory.
In other words, this register is used to access data and instructions from memory during the execution phase of instruction. MAR holds the memory location of data that needs to be accessed. When reading from memory, data addressed by MAR is fed into the MDR (memory data register) and then used by the CPU. When writing to memory, the CPU writes ...