enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    We say that 15 is congruent to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, 8:00 represents a period of 8 hours, and twice this would give 16:00, which reads as 4:00 on the clock face, written as 2 × 8 ≡ 4 (mod 12).

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    If p is a prime number which is not a divisor of b, then ab p−1 mod p = a mod p, due to Fermat's little theorem. Inverse: [(−a mod n) + (a mod n)] mod n = 0. b −1 mod n denotes the modular multiplicative inverse, which is defined if and only if b and n are relatively prime, which is the case when the left hand side is defined: [(b −1 ...

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, if N = 17, then the sum of the residue classes 7 and 15 is computed by finding the integer sum 7 + 15 = 22, then determining 22 mod 17, the integer between 0 and 16 whose difference with 22 is a multiple of 17. In this case, that integer is 5, so 7 + 15 ≡ 5 mod 17.

  7. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    Any character mod a prime power is also a character mod every larger power. For example, mod 16 [ 31 ] 1 3 5 7 9 11 13 15 χ 16 , 3 1 − i − i 1 − 1 i i − 1 χ 16 , 9 1 − 1 − 1 1 1 − 1 − 1 1 χ 16 , 15 1 − 1 1 − 1 1 − 1 1 − 1 {\displaystyle {\begin{array}{|||}&1&3&5&7&9&11&13&15\\\hline \chi _{16,3}&1&-i&-i&1&-1&i&i&-1 ...