Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
Otherwise, if e is not in T then T + e has a cycle C. The cycle C contains edges which do not belong to F + e, since e does not form a cycle when added to F but does in T. Let f be an edge which is in C but not in F + e. Note that f also belongs to T, since f belongs to T + e but not F + e. By P, f has not been considered by the algorithm.
3D version of Prim's algorithm. Vertical layers are labeled 1 through 4 from bottom to top. Stairs up are indicated with "/"; stairs down with "\", and stairs up-and-down with "x". Source code is included with the image description. Other algorithms exist that require only enough memory to store one line of a 2D maze or one plane of a 3D maze.
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...
Dinic's algorithm or Dinitz's algorithm is a strongly polynomial algorithm for computing the maximum flow in a flow network, conceived in 1970 by Israeli (formerly Soviet) computer scientist Yefim Dinitz. [1]
For these reasons, for C++ code to call a C function foo(), the C++ code must prototype foo() with extern "C". Likewise, for C code to call a C++ function bar(), the C++ code for bar() must be declared with extern "C". A common practice for header files to maintain both C and C++ compatibility is to make its declaration be extern "C" for the ...