Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
Iodine-131 (131 I) is the most common RNT worldwide and uses the simple compound sodium iodide with a radioactive isotope of iodine. The patient (human or animal) may ingest an oral solid or liquid amount or receive an intravenous injection of a solution of the compound. The iodide ion is selectively taken up by the thyroid gland.
Another well-known radioactive isotope used in medicine is Iodine-131, which is used as a radioactive label for some radiopharmaceutical therapies or the treatment of some types of thyroid cancer. [2]
This isotope of radioactive iodine used for ablative treatment is more potent than diagnostic radioiodine (usually iodine-123 or a very low amount of iodine-131), which has a biological half-life from 8–13 hours. Iodine-131, which also emits beta particles that are far more damaging to tissues at short range, has a half-life of approximately ...
Radionuclide therapy (also known as systemic radioisotope therapy, radiopharmaceutical therapy, or molecular radiotherapy), is a form of targeted therapy. Targeting can be due to the chemical properties of the isotope such as radioiodine which is specifically absorbed by the thyroid gland a thousandfold better than other bodily organs.
Iodine-125 (125 I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.
The application of radioactive iodine in the diagnosis and treatment of thyroid disease is the cornerstone of nuclear medicine. [5] Barbara Bush, who was successfully treated with radioiodine, wrote to Vitta Hertz, his widow, “It is comforting to know that so many people are well because of the scientific expertise of people like Dr. Hertz ...
There are 40 known isotopes of iodine (53 I) from 108 I to 147 I; all undergo radioactive decay except 127 I, which is stable. Iodine is thus a monoisotopic element.. Its longest-lived radioactive isotope, 129 I, has a half-life of 16.14 million years, which is far too short for it to exist as a primordial nuclide.