enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  3. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region enclosed by the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks ...

  4. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  6. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    We assume that is well behaved and that we can reverse the order of integration. Also, recall that flow is normal to the unit area of the cell. Now, since in one dimension , we can apply the divergence theorem, i.e. =, and substitute for the volume integral of the divergence with the values of () evaluated at the cell surface (edges / and + /) of the finite volume as follows:

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  8. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as ⁡ =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.