Search results
Results from the WOW.Com Content Network
The divergence theorem is employed in any conservation law which states ... is the volume element on and the above formula reads (,) = (, ) + , . This completes ...
The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero: v ⋅ d S = 0 , {\displaystyle \;\;\mathbf {v} \cdot \,d\mathbf {S} =0,}
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region .
The integration by parts formula states: ... to apply the theorem, one must find v, the antiderivative of v', ... and applying the divergence theorem, ...
The divergence of a tensor field () is defined using the recursive relation = ; = () where c is an arbitrary constant vector and v is a vector field. If T {\displaystyle {\boldsymbol {T}}} is a tensor field of order n > 1 then the divergence of the field is a tensor of order n − 1.