enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...

  3. Hurewicz theorem - Wikipedia

    en.wikipedia.org/wiki/Hurewicz_theorem

    In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz , and generalizes earlier results of Henri Poincaré .

  4. A¹ homotopy theory - Wikipedia

    en.wikipedia.org/wiki/A¹_homotopy_theory

    A 1 homotopy theory is founded on a category called the A 1 homotopy category ().Simply put, the A 1 homotopy category, or rather the canonical functor (), is the universal functor from the category of smooth -schemes towards an infinity category which satisfies Nisnevich descent, such that the affine line A 1 becomes contractible.

  5. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.

  6. Künneth theorem - Wikipedia

    en.wikipedia.org/wiki/Künneth_theorem

    In general one uses singular homology; but if X and Y happen to be CW complexes, then this can be replaced by cellular homology, because that is isomorphic to singular homology. The simplest case is when the coefficient ring for homology is a field F. In this situation, the Künneth theorem (for singular homology) states that for any integer k,

  7. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.

  8. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    A homotopy pullback (or homotopy fiber-product) is the dual concept of a homotopy pushout. It satisfies the universal property of a pullback up to homotopy. [ citation needed ] Concretely, given f : X → Z {\displaystyle f:X\to Z} and g : Y → Z {\displaystyle g:Y\to Z} , it can be constructed as

  9. Lefschetz hyperplane theorem - Wikipedia

    en.wikipedia.org/wiki/Lefschetz_hyperplane_theorem

    A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories. A far-reaching generalization of the hard Lefschetz theorem is given by the decomposition theorem.