enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    Vertex the (n−5)-face of the 5-polytope; Edge the (n−4)-face of the 5-polytope; Face the peak or (n−3)-face of the 5-polytope; Cell the ridge or (n−2)-face of the 5-polytope; Hypercell or Teron the facet or (n−1)-face of the 5-polytope

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...

  4. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.

  5. 5-polytope - Wikipedia

    en.wikipedia.org/wiki/5-polytope

    A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces.A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet.

  6. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.

  7. Pentahedron - Wikipedia

    en.wikipedia.org/wiki/Pentahedron

    There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.

  8. Star polyhedron - Wikipedia

    en.wikipedia.org/wiki/Star_polyhedron

    Two of them have pentagrammic {5/2} faces and two have pentagrammic vertex figures. These images show each form with a single face colored yellow to show the visible portion of that face. There are also an infinite number of regular star dihedra and hosohedra {2,p/q} and {p/q,2} for any star polygon {p/q}. While degenerate in Euclidean space ...

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.