Search results
Results from the WOW.Com Content Network
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the
In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
In other words, any affine transformation maps the tangent plane to the surface at a point to the tangent plane to the image of the surface at the image of the point. The normal line at a point of a surface is the unique line passing through the point and perpendicular to the tangent plane; the normal vector is a vector which is parallel to the ...
As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the ...
In particular, the tangent plane to a point of S can be rolled on S: this should be easy to imagine when S is a surface like the 2-sphere, which is the smooth boundary of a convex region. As the tangent plane is rolled on S, the point of contact traces out a curve on S. Conversely, given a curve on S, the tangent plane can be rolled along that ...
The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.