Search results
Results from the WOW.Com Content Network
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power , often expressed in decibels .
Traditionally, SNR is defined to be the ratio of the average signal value to the standard deviation of the signal : [2] [3] = when the signal is an optical intensity, or as the square of this value if the signal and noise are viewed as amplitudes (field quantities).
The ratio of (a) total received power, i.e., the signal to (b) the noise-plus-distortion power. This is modeled by the equation above. [2] The ratio of (a) the power of a test signal, i.e. a sine wave, to (b) the residual received power, i.e. noise-plus-distortion power. With this definition, it is possible to have a SINAD level less than one.
[5] [6] Acceptable values for wireless transmission quality loss are considered to be about 20 dB to 25 dB. [7] [8] In the absence of noise, the two images I and K are identical, and thus the MSE is zero. In this case the PSNR is infinite (or undefined, see Division by zero). [9]
Audio engineers use dynamic range to describe the ratio of the amplitude of the loudest possible undistorted signal to the noise floor, say of a microphone or loudspeaker. [18] Dynamic range is therefore the signal-to-noise ratio (SNR) for the case where the signal is the loudest possible for the system. For example, if the ceiling of a device ...
Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters. The mathematical limits for noise removal are set by information theory .
Sensitivity second definition: the minimum magnitude of input signal required to produce an output signal with a specified signal-to-noise ratio of an instrument or sensor. Examples of the use of this definition are given in the sections below on receivers and electronic sensors.
A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity.