Search results
Results from the WOW.Com Content Network
Hyperconjugation affects several properties. [6] [10]Bond length: Hyperconjugation is suggested as a key factor in shortening of sigma bonds (σ bonds). For example, the single C–C bonds in 1,3-butadiene and propyne are approximately 1.46 Å in length, much less than the value of around 1.54 Å found in saturated hydrocarbons.
The Cieplak effect relies on the stabilizing interaction of mixing full and empty orbitals to delocalize electrons, known as hyperconjugation. [2] When the highest occupied molecular orbital of one system and the lowest unoccupied molecular orbital of another system have comparable energies and spatial overlap, the electrons can delocalize and sink into a lower energy level.
C-H hyperconjugation is a significant factor because the C-H bond can significantly overlap with the vacant p-orbital. Another possible explanation is that smaller size of the hydrogen substituent allows solvation to take place more easily contributing more significant stabilization.
Negative hyperconjugation is a theorized phenomenon in organosilicon compounds, ... (CH 3) 3 moieties on C–H homo- and heterolysis. They, too, concluded that the β ...
Free-radical intermediate is stabilized by hyperconjugation; adjacent occupied sigma C–H orbitals donate into the electron-deficient radical orbital. A new method of anti-Markovnikov addition has been described by Hamilton and Nicewicz, who utilize aromatic molecules and light energy from a low-energy diode to turn the alkene into a cation ...
In the hyperconjugation model, the donation of electron density from the C−H σ bonding orbital to the C−F σ * antibonding orbital is considered the source of stabilization in the gauche isomer. Due to the greater electronegativity of fluorine, the C−H σ orbital is a better electron donor than the C−F σ orbital, while the C−F σ ...
In organic chemistry and organometallic chemistry, carbon–hydrogen bond activation (C−H activation) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a C−X bond (X ≠ H is typically a main group element, like carbon, oxygen, or nitrogen).
This bonding pattern is also seen in trimethylaluminium, which forms a dimer Al 2 (CH 3) 6 with the carbon atoms of two of the methyl groups in bridging positions. This type of bond also occurs in carbon compounds, where it is sometimes referred to as hyperconjugation; another name for asymmetrical three-center two-electron bonds.