Search results
Results from the WOW.Com Content Network
Thermoelectric materials are used in thermoelectric systems for cooling or heating in niche applications, and are being studied as a way to regenerate electricity from waste heat. [3] Research in the field is still driven by materials development, primarily in optimizing transport and thermoelectric properties.
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. [1] A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature ...
This material is used in the radioisotope thermoelectric generators (RTGs) that power Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, and New Horizons spacecraft. SiGe thermoelectric material converts enough radiated heat into electrical power to fully meet the power demands of each spacecraft. The properties of the material and the remaining ...
Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
These improvements highlight the fact that in addition to the development of novel materials for thermoelectric applications, using different processing techniques to design microstructure is a viable and worthwhile effort. In fact, it often makes sense to work to optimize both composition and microstructure. [31]
The performance of thermoelectric materials can be evaluated by the figure of merit, = /, in which is the Seebeck coefficient, is the electrical conductivity and is the thermal conductivity. In order to improve the thermoelectric performance of materials, the power factor ( S 2 σ {\displaystyle S^{2}\sigma } ) needs to be maximized and the ...
Half-Heusler thermoelectric materials have distinct advantages over many other thermoelectric materials; low toxicity, inexpensive element, robust mechanical properties, and high thermal stability make half-Heusler thermoelectrics an excellent option for mid-high temperature application.
Although the Seebeck effect was discovered in 1821, the use of thermoelectric power generators was restricted mainly to military and space applications until the second half of the twentieth century. This restriction was caused by the low conversion efficiency of thermoelectric materials at that time.