Search results
Results from the WOW.Com Content Network
Calculating and visualizing the resultant force on a body is done through computational analysis, or (in the case of sufficiently simple systems) a free body diagram. The point of application of the resultant force determines its associated torque. The term resultant force should be understood to refer to both the forces and torques acting on a ...
Block on a ramp and corresponding free body diagram of the block.. In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition.
Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.
Calculating the stress distribution implies the determination of stresses at every point (material particle) in the object. According to Cauchy , the stress at any point in an object (Figure 2), assumed as a continuum, is completely defined by the nine stress components σ i j {\displaystyle \sigma _{ij}} of a second order tensor of type (2,0 ...
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
The sum of the net force and torque is called the resultant force, which causes the object to rotate in the same way as all the forces acting upon it would if they were applied individually. [2] It is possible for all the forces acting upon an object to produce no torque at all. This happens when the net force is applied along the line of action.
Figure 2.1a Internal distribution of contact forces and couple stresses on a differential of the internal surface in a continuum, as a result of the interaction between the two portions of the continuum separated by the surface Figure 2.1b Internal distribution of contact forces and couple stresses on a differential of the internal surface in a continuum, as a result of the interaction between ...