Search results
Results from the WOW.Com Content Network
A set of binary strings is definable in S2S iff it is regular (i.e. forms a regular language). In S1S, a (unary) predicate on sets is (parameter-free) definable iff it is an ω-regular language. For S2S, for formulas that use their free variables only on strings not containing a 1, the expressiveness is the same as for S1S.
In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...
A subsystem of second-order arithmetic is a theory in the language of second-order arithmetic each axiom of which is a theorem of full second-order arithmetic (Z 2). Such subsystems are essential to reverse mathematics , a research program investigating how much of classical mathematics can be derived in certain weak subsystems of varying strength.
In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. [1] It is particularly important in the logic of graphs , because of Courcelle's theorem , which provides algorithms for evaluating monadic second-order formulas over graphs ...
For example, if the domain is the set of all real numbers, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀x ∃y (x + y = 0) but one needs second-order logic to assert the least-upper-bound property for sets of real numbers, which states that every bounded, nonempty set of real numbers ...
Feedback system with a PD controller and a double integrator plant In systems and control theory , the double integrator is a canonical example of a second-order control system. [ 1 ] It models the dynamics of a simple mass in one-dimensional space under the effect of a time-varying force input u {\displaystyle {\textbf {u}}} .
[1] [2] The realization is called "minimal" because it describes the system with the minimum number of states. [2] The minimum number of state variables required to describe a system equals the order of the differential equation; [3] more state variables than the minimum can be defined. For example, a second order system can be defined by two ...
Tarski's axiomatization, which is a second-order theory, can be seen as a version of the more usual definition of real numbers as the unique Dedekind-complete ordered field; it is however made much more concise by avoiding multiplication altogether and using unorthodox variants of standard algebraic axioms and other subtle tricks. Tarski did ...