Search results
Results from the WOW.Com Content Network
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]
By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:
8/2 may refer to: August 2 (month-day date notation) February 8 (day-month date notation) The fraction otherwise known as 4 This page was last edited on 20 ...
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n+1 = 1 / a n+1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence {d i} to make each partial denominator a 1:
In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series , it is characterized by its first term, 1, and its common ratio , 2. As a series of real numbers it diverges to infinity , so the sum of this series is infinity.
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
Glucose (C 6 H 12 O 6), ribose (C 5 H 10 O 5), Acetic acid (C 2 H 4 O 2), and formaldehyde (CH 2 O) all have different molecular formulas but the same empirical formula: CH 2 O.This is the actual molecular formula for formaldehyde, but acetic acid has double the number of atoms, ribose has five times the number of atoms, and glucose has six times the number of atoms.
The fundamental theorem of finitely generated abelian groups can be stated two ways, generalizing the two forms of the fundamental theorem of finite abelian groups.The theorem, in both forms, in turn generalizes to the structure theorem for finitely generated modules over a principal ideal domain, which in turn admits further generalizations.