enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  4. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives .

  5. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    By means of integration by parts, a reduction formula can be obtained. Using the identity ⁡ = ⁡, we have for all , ⁡ = (⁡) (⁡) = ⁡ ⁡ ⁡. Integrating the second integral by parts, with:

  6. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the above table, the particular integral can be guessed using a sum of the corresponding terms for y. [1]

  7. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Many transcendental equations can be solved up to an arbitrary precision by using Newton's method. For example, finding the cumulative probability density function, such as a Normal distribution to fit a known probability generally involves integral functions with no known means to solve in closed form. However, computing the derivatives needed ...

  9. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    For n = 1 this results in the already known recurrence formula, just arranged differently, and with n = 2 it forms the recurrence relation for all even or all odd indexed Chebyshev polynomials (depending on the parity of the lowest m) which implies the evenness or oddness of these polynomials.