enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    If this is not possible (because this would cause the number of digits needed to be more than the destination format) then an overflow exception occurs. Rounded: a result's coefficient requires more digits than the destination format provides. An inexact exception is signaled if any non-zero digits are discarded.

  3. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ 2 × 10 308. The number of normal floating-point numbers in a system (B, P, L, U) where B is the base of the system, P is the precision of the significand (in base B),

  5. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.

  6. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.

  7. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The binary interchange formats have the "half precision" (16-bit storage format) and "quad precision" (128-bit format) added, together with generalized formulae for some wider formats; the basic formats have 32-bit, 64-bit, and 128-bit encodings. Three new decimal formats are described, matching the lengths of the 32–128-bit binary formats.

  8. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  9. Unum (number format) - Wikipedia

    en.wikipedia.org/wiki/Unum_(number_format)

    The defining features of the Type I unum format are: a variable-width storage format for both the significand and exponent, and; a u-bit, which determines whether the unum corresponds to an exact number (u = 0), or an interval between consecutive exact unums (u = 1). In this way, the unums cover the entire extended real number line [−∞,+∞].