Search results
Results from the WOW.Com Content Network
Both p and q can be determined simultaneously using extended autocorrelation functions (EACF). [9] Further information can be gleaned by considering the same functions for the residuals of a model fitted with an initial selection of p and q. Brockwell & Davis recommend using Akaike information criterion (AIC) for finding p and q. [10]
Different authors have different approaches for identifying p and q. Brockwell and Davis (1991) [3] state "our prime criterion for model selection [among ARMA(p,q) models] will be the AICc", i.e. the Akaike information criterion with correction. Other authors use the autocorrelation plot and the partial autocorrelation plot, described below.
Non-seasonal ARIMA models are usually denoted ARIMA(p, d, q) where parameters p, d, q are non-negative integers: p is the order (number of time lags) of the autoregressive model, d is the degree of differencing (the number of times the data have had past values subtracted), and q is the order of the moving-average model.
The acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply extend the "ARIMA(p, d, q)" notation for models, by simply allowing the order of differencing, d, to take fractional values.
[1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, [3] which have a more complicated stochastic ...
The AR(p) model is given by the equation = = +. It is based on parameters where i = 1, ..., p. There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances).
The partial autocorrelation for an AR(p) model is nonzero for lags less than or equal to p and 0 for lags greater than p. Moving-average model: If , >, the partial autocorrelation oscillates to 0. If , <, the partial autocorrelation geometrically decays to 0. Autoregressive–moving-average model: An ARMA(p, q) model's partial autocorrelation ...
Polynomials of the lag operator can be used, and this is a common notation for ARMA (autoregressive moving average) models. For example, = = = (=) specifies an AR(p) model.A polynomial of lag operators is called a lag polynomial so that, for example, the ARMA model can be concisely specified as