enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Successor function - Wikipedia

    en.wikipedia.org/wiki/Successor_function

    The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]

  3. Prefix sum - Wikipedia

    en.wikipedia.org/wiki/Prefix_sum

    In computer science, the prefix sum, cumulative sum, inclusive scan, or simply scan of a sequence of numbers x 0, x 1, x 2, ... is a second sequence of numbers y 0, y 1, y 2, ..., the sums of prefixes (running totals) of the input sequence: y 0 = x 0 y 1 = x 0 + x 1 y 2 = x 0 + x 1 + x 2... For instance, the prefix sums of the natural numbers ...

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Structural recursion includes nearly all tree traversals, including XML processing, binary tree creation and search, etc. By considering the algebraic structure of the natural numbers (that is, a natural number is either zero or the successor of a natural number), functions such as factorial may also be regarded as structural recursion.

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...

  6. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    This characterization states that a function is primitive recursive if and only if there is a natural number m such that the function can be computed by a Turing machine that always halts within A(m,n) or fewer steps, where n is the sum of the arguments of the primitive recursive function. [5]

  7. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    sum = 10003.1 sum = t. The sum is so large that only the high-order digits of the input numbers are being accumulated. But on the next step, c, an approximation of the running error, counteracts the problem. y = 2.71828 - (-0.0415900) Most digits meet, since c is of a size similar to y. = 2.75987 The shortfall (low-order digits lost) of ...

  8. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  9. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    For example, the sum of the first n natural numbers can be denoted as ∑ i = 1 n i {\displaystyle \sum _{i=1}^{n}i} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result.