Search results
Results from the WOW.Com Content Network
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
Convex analysis - the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization. Convex combination - a linear combination of points where all coefficients are non-negative and sum to 1. All convex combinations are within the convex hull of the given points.
A logarithmically convex function f is a convex function since it is the composite of the increasing convex function and the function , which is by definition convex. However, being logarithmically convex is a strictly stronger property than being convex.
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .
For example, a solid cube is convex; however, anything that is hollow or dented, for example, a crescent shape, is non‑convex. Trivially, the empty set is convex. More formally, a set Q is convex if, for all points v 0 and v 1 in Q and for every real number λ in the unit interval [0,1], the point (1 − λ) v 0 + λv 1. is a member of Q.
A plane curve is called convex if it has a supporting line through each of its points. [8] [9] For example, the graph of a convex function has a supporting line below the graph through each of its points. More strongly, at the points where the function has a derivative, there is exactly one supporting line, the tangent line. [10]
For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.