Search results
Results from the WOW.Com Content Network
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]
Computing E(m, j) is very similar to computing the edit distance between two strings. In fact, we can use the Levenshtein distance computing algorithm for E ( m , j ), the only difference being that we must initialize the first row with zeros, and save the path of computation, that is, whether we used E ( i − 1, j ), E( i , j − 1) or E ( i ...
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.
Naively computing the hash value for the substring s[i+1..i+m] requires O(m) time because each character is examined. Since the hash computation is done on each loop, the algorithm with a naive hash computation requires O(mn) time, the same complexity as a straightforward string matching algorithm. For speed, the hash must be computed in ...