Search results
Results from the WOW.Com Content Network
The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.
Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
To enable handling long data sequences, Mamba incorporates the Structured State Space sequence model (S4). [2] S4 can effectively and efficiently model long dependencies by combining continuous-time, recurrent, and convolutional models. These enable it to handle irregularly sampled data, unbounded context, and remain computationally efficient ...
The standard LSTM architecture was introduced in 2000 by Felix Gers, Schmidhuber, and Fred Cummins. [20] Today's "vanilla LSTM" using backpropagation through time was published with his student Alex Graves in 2005, [21] [22] and its connectionist temporal classification (CTC) training algorithm [23] in 2006. CTC was applied to end-to-end speech ...
A 380M-parameter model for machine translation uses two long short-term memories (LSTM). [23] Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence
Model diagnostics. Coefficient of determination ... It is written in C++, with a Python interface. [5] ... It supports CNN, RCNN, LSTM and fully-connected neural ...
The original Switch Transformer was applied to a T5 language model. [21] As demonstration, they trained a series of models for machine translation with alternating layers of MoE and LSTM, and compared with deep LSTM models. [22] Table 3 shows that the MoE models used less inference time compute, despite having 30x more parameters.