enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  3. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    The system is time-invariant if and only if y 2 (t) = y 1 (t – t 0) for all time t, for all real constant t 0 and for all input x 1 (t). [1] [2] [3] Click image to expand it. In control theory, a time-invariant (TI) system has a time-dependent system function that is not a direct function of time.

  4. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can observe if the LTI system is or is not controllable simply by looking at the pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} .

  5. Linear time property - Wikipedia

    en.wikipedia.org/wiki/Linear_time_property

    In model checking, a branch of computer science, linear time properties are used to describe requirements of a model of a computer system. Example properties include "the vending machine does not dispense a drink until money has been entered" (a safety property ) or "the computer program eventually terminates" (a liveness property ).

  6. Relative gain array - Wikipedia

    en.wikipedia.org/wiki/Relative_Gain_Array

    Given a linear time-invariant (LTI) system represented by a nonsingular matrix , the relative gain array (RGA) is defined as = = (). where is the elementwise Hadamard product of the two matrices, and the transpose operator (no conjugate) is necessary even for complex .

  7. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    If we assume the controller C, the plant P, and the sensor F are linear and time-invariant (i.e., elements of their transfer function C(s), P(s), and F(s) do not depend on time), the systems above can be analysed using the Laplace transform on the variables. This gives the following relations:

  8. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  9. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.