Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
A lens with a different shape forms the answer to Mrs. Miniver's problem, on finding a lens with half the area of the union of the two circles. Lenses are used to define beta skeletons, geometric graphs defined on a set of points by connecting pairs of points by an edge whenever a lens determined by the two points is empty.
A diagram showing the optical center of a spherical lens. N and N' are the lens nodal points. The optical center of a spherical lens is a point such that If a ray passes through it, then its lens-exiting angle with respect to the optical axis is not deviated from the lens-entering angle.
An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. [1] Lens elements often have rotational symmetry about the axis. The optical axis defines the path along which light propagates through the system, up to first approximation.
In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7]
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...
In plane geometry, a lune (from Latin luna 'moon') is the concave-convex region bounded by two circular arcs. [1] It has one boundary portion for which the connecting segment of any two nearby points moves outside the region and another boundary portion for which the connecting segment of any two nearby points lies entirely inside the region.