enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fractional factorial design - Wikipedia

    en.wikipedia.org/wiki/Fractional_factorial_design

    The results of that example may be used to simulate a fractional factorial experiment using a half-fraction of the original 2 4 = 16 run design. The table shows the 2 4-1 = 8 run half-fraction experiment design and the resulting filtration rate, extracted from the table for the full 16 run factorial experiment.

  3. Factorial experiment - Wikipedia

    en.wikipedia.org/wiki/Factorial_experiment

    Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.

  4. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    In applied mathematics and mathematical analysis, a fractional derivative is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. [ 2 ]

  5. Central composite design - Wikipedia

    en.wikipedia.org/wiki/Central_composite_design

    The design matrix for a central composite design experiment involving k factors is derived from a matrix, d, containing the following three different parts corresponding to the three types of experimental runs: The matrix F obtained from the factorial experiment. The factor levels are scaled so that its entries are coded as +1 and −1.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  7. Linear fractional transformation - Wikipedia

    en.wikipedia.org/wiki/Linear_fractional...

    An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry , number theory (they are used, for example, in Wiles's proof ...

  8. Fractal - Wikipedia

    en.wikipedia.org/wiki/Fractal

    In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set.

  9. Fractal dimension - Wikipedia

    en.wikipedia.org/wiki/Fractal_dimension

    The terms fractal dimension and fractal were coined by Mandelbrot in 1975, [16] about a decade after he published his paper on self-similarity in the coastline of Britain. . Various historical authorities credit him with also synthesizing centuries of complicated theoretical mathematics and engineering work and applying them in a new way to study complex geometries that defied description in ...