enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  4. Bayesian classifier - Wikipedia

    en.wikipedia.org/wiki/Bayesian_classifier

    In computer science and statistics, Bayesian classifier may refer to: any classifier based on Bayesian probability; a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  7. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: ^ = The samples come from some set X (e.g., the set of all documents, or the set of all images), while the class labels form a finite set Y defined prior to training.

  8. Gang-tied illegal immigrant ‘giggled’ as he confessed to ...

    www.aol.com/gang-tied-illegal-immigrant-giggled...

    A Honduras gang member who was illegally in the US “giggled” as he admitted kidnapping a young Texas woman at gunpoint and threatening to pimp her out and sell her organs, according to cops.

  9. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    The classifier should furthermore be able to adapt to its user and to learn from experience. Starting from an initial standard setting, the classifier should modify its internal parameters when the user disagrees with its own decision. It will hence adapt to the user's criteria to differentiate between non-spam and spam.