enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors. Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure. Common applications of mixed models include ...

  5. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case, the correlation coefficient is undefined because the variance of Y is zero.

  6. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    This relationship between the true (but unobserved) underlying parameters α and β and the data points is called a linear regression model. The goal is to find estimated values α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle {\widehat {\beta }}} for the parameters α and β which would provide the "best" fit in some sense for ...

  8. Linear model - Wikipedia

    en.wikipedia.org/wiki/Linear_model

    An example of a linear time series model is an autoregressive moving average model.Here the model for values {} in a time series can be written in the form = + + = + =. where again the quantities are random variables representing innovations which are new random effects that appear at a certain time but also affect values of at later times.

  9. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    x M and, as in the example above, two categorical values (y = 0 and 1). For the simple binary logistic regression model, we assumed a linear relationship between the predictor variable and the log-odds (also called logit) of the event that =. This linear relationship may be extended to the case of M explanatory variables: