Ad
related to: transporting oxygen cylinders lying down the wall of the cell
Search results
Results from the WOW.Com Content Network
Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. [1] Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting ...
In contrast, paracellular transport is the transfer of substances across an epithelium by passing through an intercellular space between the cells. It differs from transcellular transport, where the substances travel through the cell passing through both the apical membrane and basolateral membrane; Renal physiology. Transcellular transport is ...
Active transport enables these cells to take up salts from this dilute solution against the direction of the concentration gradient. For example, chloride (Cl −) and nitrate (NO 3 −) ions exist in the cytosol of plant cells, and need to be transported into the vacuole. While the vacuole has channels for these ions, transportation of them is ...
In physiology, respiration is the transport of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction to the environment by a respiratory system. [1]
intracellular transport (associated with dyneins and kinesins, they transport organelles like mitochondria or vesicles). Cross section diagram through the cilium, showing the “9 + 2” arrangement of microtubules the axoneme of cilia and flagella. the mitotic spindle. synthesis of the cell wall in plants.
The yellow triangle shows the concentration gradient for the yellow circles and the purple rods are the transport protein bundle. Since they move down their concentration gradient through a transport protein, they can release energy as a result of chemiosmosis. One example is GLUT1 which moves glucose down its concentration gradient into the cell.
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
These metalloproteins contain two copper atoms that reversibly bind a single oxygen molecule (O 2). They are second only to hemoglobin in frequency of use as an oxygen transport molecule. Unlike the hemoglobin in red blood cells found in vertebrates, hemocyanins are not confined in blood cells, but are instead suspended directly in the hemolymph.
Ad
related to: transporting oxygen cylinders lying down the wall of the cell