enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.

  3. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained by estimating the covariance (e.g. by maximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. by Cholesky decomposition).

  4. Additive noise differential privacy mechanisms - Wikipedia

    en.wikipedia.org/wiki/Additive_noise...

    This added noise obscures the influence of any single individual's data, thereby protecting their privacy while still allowing for meaningful statistical analysis. Common distributions used for noise generation include the Laplace and Gaussian distributions. These mechanisms are particularly useful for functions that output real-valued numbers.

  5. Total variation denoising - Wikipedia

    en.wikipedia.org/wiki/Total_variation_denoising

    The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.

  6. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    If the noise has expected value of zero, as is common, the denominator is its variance, the square of its standard deviation σ N. The signal and the noise must be measured the same way, for example as voltages across the same impedance. Their root mean squares can alternatively be used according to:

  7. Spectral leakage - Wikipedia

    en.wikipedia.org/wiki/Spectral_leakage

    The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum.Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles of the non-zero values of S(f).

  8. Oversampling - Wikipedia

    en.wikipedia.org/wiki/Oversampling

    In similar cases where the ADC records no noise and the input signal is changing over time, oversampling improves the result, but to an inconsistent and unpredictable extent. Adding some dithering noise to the input signal can actually improve the final result because the dither noise allows oversampling to work to improve resolution. In many ...

  9. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.