enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  3. Wheeler–Feynman absorber theory - Wikipedia

    en.wikipedia.org/wiki/Wheeler–Feynman_absorber...

    The Wheeler–Feynman absorber theory (also called the Wheeler–Feynman time-symmetric theory), named after its originators, the physicists Richard Feynman and John Archibald Wheeler, is a theory of electrodynamics based on a relativistic correct extension of action at a distance electron particles. The theory postulates no independent ...

  4. Monte Carlo method for photon transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method_for...

    The required parameters are the absorption coefficient, the scattering coefficient, and the scattering phase function. (If boundaries are considered the index of refraction for each medium must also be provided.) Time-resolved responses are found by keeping track of the total elapsed time of the photon's flight using the optical path length ...

  5. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). [1] It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photons that excite electrons to a higher energy level in an atom), hence the prefix photo- . [ 2 ]

  6. Elliott formula - Wikipedia

    en.wikipedia.org/wiki/Elliott_formula

    One of the most accurate theories of semiconductor absorption and photoluminescence is provided by the SBEs and SLEs, respectively. Both of them are systematically derived starting from the many-body/quantum-optical system Hamiltonian and fully describe the resulting quantum dynamics of optical and quantum-optical observables such as optical polarization (SBEs) and photoluminescence intensity ...

  7. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength. Although absorption spectroscopy and emission spectroscopy are different in principle, they are closely related in practice; any technique for emission spectroscopy can also be used for absorption spectroscopy.

  8. Absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Absorption_spectroscopy

    The specificity of absorption spectra allows compounds to be distinguished from one another in a mixture, making absorption spectroscopy useful in wide variety of applications. For instance, Infrared gas analyzers can be used to identify the presence of pollutants in the air, distinguishing the pollutant from nitrogen, oxygen, water, and other ...

  9. Time-dependent density functional theory - Wikipedia

    en.wikipedia.org/wiki/Time-dependent_density...

    The formal foundation of TDDFT is the Runge–Gross (RG) theorem (1984) [1] – the time-dependent analogue of the Hohenberg–Kohn (HK) theorem (1964). [2] The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density.