Search results
Results from the WOW.Com Content Network
[18] [19] The bacteria can also replace the PBP that is vulnerable to Beta-lactam antibiotics with PBP that is less vulnerable. [20] β-lactam antibiotics can be inactivated by many types of β-lactamases, which are produced by bacteria. The enzymes hydrolyze the bond between the carbon and nitrogen atom of the β-lactam ring. There are many ...
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
These enzymes have a variety of uses including degradation of plant materials (e.g., cellulases for degrading cellulose to glucose, which can be used for ethanol production), in the food industry (invertase for manufacture of invert sugar, amylase for production of maltodextrins), and in the paper and pulp industry (xylanases for removing ...
The enzyme chorismate synthase (EC 4.2.3.5) catalyzes the chemical reaction 5- O -(1-carboxyvinyl)-3-phosphoshikimate ⇌ {\displaystyle \rightleftharpoons } chorismate + phosphate This enzyme belongs to the family of lyases , specifically those carbon-oxygen lyases acting on phosphates.
Extracellular enzyme production supplements the direct uptake of nutrients by microorganisms and is linked to nutrient availability and environmental conditions. The varied chemical structure of organic matter requires a suite of extracellular enzymes to access the carbon and nutrients embedded in detritus .
Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates, with conversion by the living organism either into simpler or more complex ...
Following this, the linkers, containing internal restriction sites, are digested with the appropriate restriction enzyme and the sticky ends are ligated together into concatamers. Following concatenation, the fragments are ligated into plasmids and are used to transform bacteria to generate many copies of the plasmid containing the inserts.
Ribbon representation of the Streptomyces lividans β-1,4-endoglucanase catalytic domain - an example from the family 12 glycoside hydrolases [1]. Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides: