Search results
Results from the WOW.Com Content Network
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
First, the enumerated set { (x, 1), (y, 2), (z, 3) } is defined in which the number in each ordered pair represents the position of the paired element of S in a sequence of binary digits such as {x, y} = 011 (2); x of S is located at the first from the right of this sequence and y is at the second from the right, and 1 in the sequence means the ...
FOR i FROM 1 BY 2 TO 3 WHILE i≠4 DO ~ OD Further, the single iteration range could be replaced by a list of such ranges. There are several unusual aspects of the construct only the do ~ od portion was compulsory, in which case the loop will iterate indefinitely. thus the clause to 100 do ~ od, will iterate exactly 100 times.
The Encyclopedia of Mathematics [7] defines interval (without a qualifier) to exclude both endpoints (i.e., open interval) and segment to include both endpoints (i.e., closed interval), while Rudin's Principles of Mathematical Analysis [8] calls sets of the form [a, b] intervals and sets of the form (a, b) segments throughout.
The method is based on the observation that 100 leaves a remainder of 2 when divided by 7. And since we are breaking the number into digit pairs we essentially have powers of 100. 1 mod 7 = 1 100 mod 7 = 2 10,000 mod 7 = 2^2 = 4 1,000,000 mod 7 = 2^3 = 8; 8 mod 7 = 1 100,000,000 mod 7 = 2^4 = 16; 16 mod 7 = 2
That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8. The same idea will work using any even base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1; and it is even if its last digit is 0.