Search results
Results from the WOW.Com Content Network
Viral phylodynamics is the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viral phylogenies. [1] Since the term was coined in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation.
Many theoretical studies of the population dynamics, structure and evolution of infectious diseases of plants and animals, including humans, are concerned with this problem. [27] Research topics include: antigenic shift; epidemiological networks; evolution and spread of resistance; immuno-epidemiology; intra-host dynamics; Pandemic; pathogen ...
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [ 1 ] [ 2 ] Viruses have short generation times, and many—in particular RNA viruses —have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).
For the full specification of the model, the arrows should be labeled with the transition rates between compartments. Between S and I, the transition rate is assumed to be (/) / = /, where is the total population, is the average number of contacts per person per time, multiplied by the probability of disease transmission in a contact between a susceptible and an infectious subject, and / is ...
Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population. The formula can be read as follows: the rate of change in the ...
Viral dynamics is a field of applied mathematics concerned with describing the progression of viral infections within a host organism. [1] It employs a family of mathematical models that describe changes over time in the populations of cells targeted by the virus and the viral load. These equations may also track competition between different ...
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:
In theory, if the mutation rate was sufficiently high, the viral population would not be able to maintain the genotype with the highest fitness, and therefore the ability of the population to adapt to its environment would be compromised. A practical application of this dynamic is in antiviral drugs employing lethal mutagenesis.