enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  5. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.

  6. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  7. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    Every tree with only countably many vertices is a planar graph. Every connected graph G admits a spanning tree, which is a tree that contains every vertex of G and whose edges are edges of G. More specific types spanning trees, existing in every connected finite graph, include depth-first search trees and breadth-first search trees.

  8. Spanning tree - Wikipedia

    en.wikipedia.org/wiki/Spanning_tree

    This tree is known as a depth-first search tree or a breadth-first search tree according to the graph exploration algorithm used to construct it. [18] Depth-first search trees are a special case of a class of spanning trees called Trémaux trees, named after the 19th-century discoverer of depth-first search. [19]

  9. Biconnected component - Wikipedia

    en.wikipedia.org/wiki/Biconnected_component

    The idea is to run a depth-first search while maintaining the following information: the depth of each vertex in the depth-first-search tree (once it gets visited), and; for each vertex v, the lowest depth of neighbors of all descendants of v (including v itself) in the depth-first-search tree, called the lowpoint.