enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.

  3. Image noise - Wikipedia

    en.wikipedia.org/wiki/Image_noise

    This noise is known as photon shot noise. [5] Shot noise follows a Poisson distribution, which can be approximated by a Gaussian distribution for large image intensity. Shot noise has a standard deviation proportional to the square root of the image intensity, and the noise at different pixels are independent of one another.

  4. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    In the example images, the sizes of the Gaussian kernels employed to smooth the sample image were 10 pixels and 5 pixels. The algorithm can also be used to obtain an approximation of the Laplacian of Gaussian when the ratio of size 2 to size 1 is roughly equal to 1.6. [3] The Laplacian of Gaussian is useful for detecting edges that appear at ...

  5. Gaussian blur - Wikipedia

    en.wikipedia.org/wiki/Gaussian_blur

    In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.

  6. Median filter - Wikipedia

    en.wikipedia.org/wiki/Median_filter

    The median filter is a non-linear digital filtering technique, often used to remove noise from an image, [1] signal, [2] and video. [3] Such noise reduction is a typical pre-processing step to improve the results of later processing (for example, edge detection on an image).

  7. Geometric mean filter - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_filter

    Each pixel of the output image at point (x,y) is given by the product of the pixels within the geometric mean mask raised to the power of 1/mn. For example, using a mask size of 3 by 3, pixel (x,y) in the output image will be the product of S(x,y) and all 8 of its surrounding pixels raised to the 1/9th power.

  8. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    By averaging pixel values with a weighted Gaussian distribution, the filter effectively blurs the image, diminishing high-frequency noise. [12] Edge Detection: Gaussian filters are often used as a preprocessing step in edge detection algorithms. By smoothing the image, they help to minimize the impact of noise before applying methods like the ...

  9. Image derivative - Wikipedia

    en.wikipedia.org/wiki/Image_derivative

    Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [ 2 ] and Gabor filters . [ 3 ]