Ads
related to: biodegradable polymers
Search results
Results from the WOW.Com Content Network
All biodegradable polymers should be stable and durable enough for use in their particular application, but upon disposal they should easily break down. [citation needed] Polymers, specifically biodegradable polymers, have extremely strong carbon backbones that are difficult to break, such that degradation often starts from the end-groups.
The biodegradable polymers used in biomedical applications typically consist of hydrolyzable esters and hydrazones. These molecules, upon external stimulation, go on to be cleaved and broken down. The cleaving activation process can be achieved through use of an acidic environment, increasing the temperature, or by use of enzymes. [82]
In tissue engineering, biodegradable polymers can be designed such to approximate tissues, providing a polymer scaffold that can withstand mechanical stresses, provide a suitable surface for cell attachment and growth, and degrade at a rate that allows the load to be transferred to the new tissue.
Starch: Starch is an inexpensive biodegradable biopolymer and copious in supply. Nanofibers and microfibers can be added to the polymer matrix to increase the mechanical properties of starch improving elasticity and strength. Without the fibers, starch has poor mechanical properties due to its sensitivity to moisture.
Biodegradable polymers are classified into three groups: medical, ecological, and dual application, while in terms of origin they are divided into two groups: natural and synthetic. [18] The Clean Technology Group is exploiting the use of supercritical carbon dioxide , which under high pressure at room temperature is a solvent that can use ...
The conditions of a sealed landfill additionally deter degradation of biodegradable polymers. Polyethylene is a polymer consisting of long chains of the monomer ethylene (IUPAC name ethene). The recommended scientific name polyethene is systematically derived from the scientific name of the monomer.[1] [2] In certain circumstances it is useful ...
Biodegradable additives can convert the plastic degradation process to one of biodegradation. Instead of being degraded simply by environmental factors, such as sunlight (photo-oxidation) or heat (thermal degradation), biodegradable additives allow polymers to be degraded by microorganisms and bacteria through direct or indirect attack.
Polyanhydrides are a class of biodegradable polymers characterized by anhydride bonds that connect repeat units of the polymer backbone chain. Their main application is in the medical device and pharmaceutical industry. In vivo, polyanhydrides degrade into non-toxic diacid monomers that can be metabolized and eliminated from the body. Owing to ...
Ads
related to: biodegradable polymers