enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]

  3. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics:

  4. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), [1] to recognize the contributions of Friedhelm Eicker, [2] Peter J. Huber, [3] and Halbert White.

  5. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  6. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike. [12] See also unbiased estimation of standard deviation for more ...

  7. Clustered standard errors - Wikipedia

    en.wikipedia.org/wiki/Clustered_standard_errors

    Huber-White standard errors assume is diagonal but that the diagonal value varies, while other types of standard errors (e.g. Newey–West, Moulton SEs, Conley spatial SEs) make other restrictions on the form of this matrix to reduce the number of parameters that the practitioner needs to estimate.

  8. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Correction factor versus sample size n.. When the random variable is normally distributed, a minor correction exists to eliminate the bias.To derive the correction, note that for normally distributed X, Cochran's theorem implies that () / has a chi square distribution with degrees of freedom and thus its square root, / has a chi distribution with degrees of freedom.

  9. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    Expected cell count Adequate expected cell counts. Some require 5 or more, and others require 10 or more. A common rule is 5 or more in all cells of a 2-by-2 table, and 5 or more in 80% of cells in larger tables, but no cells with zero expected count. When this assumption is not met, Yates's correction is applied. Independence