Search results
Results from the WOW.Com Content Network
Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).
The scalar absolute value of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s −1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector.
The SI unit of acceleration is the ... acceleration. Proper ... of a particle may be expressed as an angular speed with respect to a point at the distance ...
Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →: Repetency or spatial frequency vector: the number of cycles per unit distance m −1: L −1: vector Weight: w: Gravitational force on an object newton (N = kg⋅m/s 2) L M T −2: vector
The metre per second is the unit of both speed (a scalar quantity) and velocity (a vector quantity, which has direction and magnitude) in the International System of Units (SI), equal to the speed of a body covering a distance of one metre in a time of one second.
Therefore, the unit metre per second squared is equivalent to newton per kilogram, N·kg −1, or N/kg. [2] Thus, the Earth's gravitational field (near ground level) can be quoted as 9.8 metres per second squared, or the equivalent 9.8 N/kg. Acceleration can be measured in ratios to gravity, such as g-force, and peak ground acceleration in ...
[a] Other useful derived quantities can be specified in terms of the SI base and derived units that have no named units in the SI, such as acceleration, which has the SI unit m/s 2. [1]: 139 A combination of base and derived units may be used to express a derived unit.
The speed of light in vacuum is thus the upper limit for speed for all physical systems. In addition, the speed of light is an invariant quantity: it has the same value, irrespective of the position or speed of the observer. This property makes the speed of light c a natural measurement unit for speed and a fundamental constant of nature.