Search results
Results from the WOW.Com Content Network
Ultrahigh-pressure electrolysis is high-pressure electrolysis operating at 340–690 bars (5,000–10,000 psi). [8] At ultra-high pressures the water solubility and cross-permeation across the membrane of H 2 and O 2 is affecting hydrogen purity, modified PEMs are used to reduce cross-permeation in combination with catalytic H 2 /O 2 recombiners to maintain H 2 levels in O 2 and O 2 levels in ...
Hydrogen pipeline transport is a transportation of hydrogen through a pipe as part of the hydrogen infrastructure. Hydrogen pipeline transport is used to connect the point of hydrogen production or delivery of hydrogen with the point of demand, pipeline transport costs are similar to CNG, [9] the technology is proven, [10] however most hydrogen is produced on the place of demand with every 50 ...
The amount of electricity that has passed through the system can then be determined from the volume of gas. Thomas Edison used voltameters as electricity meters.. A Hofmann voltameter is often used as a demonstration of stoichiometric principles, as the two-to-one ratio of the volumes of hydrogen and oxygen gas produced by the apparatus illustrates the chemical formula of water, H 2 O.
Demonstration model of a direct methanol fuel cell (black layered cube) in its enclosure Scheme of a proton-conducting fuel cell. A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2]
Methods include hydrogen produced through an electrolysis, storing hydrogen on the vehicle as a second fuel, or reforming conventional fuel into hydrogen with a catalyst. There has been a great deal of research into fuel mixtures, such as gasoline and nitrous oxide injection. Mixtures of hydrogen and hydrocarbons are no exception.
Liquid hydrogen requires such low temperatures that leaks may solidify other air components such as nitrogen and oxygen. Solid oxygen can mix with liquid hydrogen, forming a mixture that could self-ignite. A jet fire can also ignite. [4] At high concentrations, hydrogen gas is an asphyxiant, but is not otherwise toxic. [5]
Hydrogen turboexpander-generators are used for hydrogen pipeline transport in combination with hydrogen compressors and energy recovery in underground hydrogen storage. A variation is the compressor loaded turboexpanders which are used in the liquefaction of gases such as liquid hydrogen .
When driven by an external source of voltage, hydrogen (H +) ions flow to the cathode to combine with electrons to produce hydrogen gas in a reduction reaction. Likewise, hydroxide (OH −) ions flow to the anode to release electrons and a hydrogen (H +) ion to produce oxygen gas in an oxidation reaction.