Search results
Results from the WOW.Com Content Network
Judgment sampling or purposive sampling, where the researcher chooses the sample based on who they think would be appropriate for the study. This is used primarily when there is a limited number of people that have expertise in the area being researched, or when the interest of the research is on a specific field or a small group.
Stratified purposive sampling is a type of typical case sampling, and is used to get a sample of cases that are "average", "above average", and "below average" on a particular variable; this approach generates three strata, or levels, each of which is relatively homogeneous, or alike. [1]
A visual representation of the sampling process. In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole ...
In theoretical sampling the researcher manipulates or changes the theory, sampling activities as well as the analysis during the course of the research. Flexibility occurs in this style of sampling when the researchers want to increase the sample size due to new factors that arise during the research.
A judgment sample, or expert sample, is a type of non-random sample that is selected based on the opinion of an expert.. Results obtained from a judgment sample are subject to some degree of bias, due to the sample's frame (i.e. the variables that define a population to be studied) and population not being identical.
Sampling methods may be either random (random sampling, systematic sampling, stratified sampling, cluster sampling) or non-random/nonprobability (convenience sampling, purposive sampling, snowball sampling). [3] The most common reason for sampling is to obtain information about a population.
In sociology and statistics research, snowball sampling [1] (or chain sampling, chain-referral sampling, referral sampling [2] [3]) is a nonprobability sampling technique where existing study subjects recruit future subjects from among their acquaintances. Thus the sample group is said to grow like a rolling snowball.
Larger samples are taken in the strata with the greatest variability to generate the least possible overall sampling variance. A real-world example of using stratified sampling would be for a political survey. If the respondents needed to reflect the diversity of the population, the researcher would specifically seek to include participants of ...