Search results
Results from the WOW.Com Content Network
On the previous IPTS-68 scale the densities [6] at 20 °C and 4 °C are, respectively, 0.9982041 and 0.9999720 resulting in an RD (20 °C/4 °C) value for water of 0.99823205. The temperatures of the two materials may be explicitly stated in the density symbols; for example: relative density: 8.15 20 °C 4 °C; or specific gravity: 2.432 15 0
Water (H 2 O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue.It is by far the most studied chemical compound [20] and is described as the "universal solvent" [21] and the "solvent of life". [22]
To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material, usually water. Thus a relative density less than one relative to water means that the substance ...
Density relative to 4 °C water [citation needed] Density at 20 °C relative to 20 °C water Density at 25 °C relative to 25 °C water Freezing temperature, °C
Note: There is no universal agreement on the exact density of pure water at various temperatures since each industry will often use a different standard. For example the, USGS says it is 0.99907 g/cm 3. [9] While the relative variance between values may be low, it is best to use the agreed upon standard for the industry you are working in,
Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane. Thus, the system could be understood as representing a practical spectrum of the density of liquids between −100 and 100, with values near 0 being the approximate density of water.
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
The density of a material is defined as mass divided by volume, typically expressed in units of kg/m 3.Unlike density, specific weight is not a fixed property of a material, as it depends on the value of the gravitational acceleration, which varies with location (e.g., Earth's gravity).