enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  3. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The electrostatic potential energy, E pair, between a pair of ions of equal and opposite charge is: = where z = magnitude of charge on one ion e = elementary charge, 1.6022 × 10 −19 C ε 0 = permittivity of free space 4 π ε 0 = 1.112 × 10 −10 C 2 /(J·m)

  4. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:

  5. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.

  6. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and

  7. Ionic potential - Wikipedia

    en.wikipedia.org/wiki/Ionic_potential

    Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.

  8. Surface charge - Wikipedia

    en.wikipedia.org/wiki/Surface_charge

    According to Gauss’s law, a conductor at equilibrium carrying an applied current has no charge on its interior.Instead, the entirety of the charge of the conductor resides on the surface, and can be expressed by the equation: = where E is the electric field caused by the charge on the conductor and is the permittivity of the free space.

  9. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The Drude model considers the metal to be formed of a collection of positively charged ions from which a number of "free electrons" were detached. These may be thought to be the valence electrons of the atoms that have become delocalized due to the electric field of the other atoms. [Ashcroft & Mermin 12]