Search results
Results from the WOW.Com Content Network
In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, =, or specifically, of which the velocity is comparable to the speed of light. [1]
As such, the equation cannot be applied to the description of atoms, since the electron is a spin 1 / 2 particle. In the non-relativistic limit the equation reduces to the Schrödinger equation for a spinless charged particle in an electromagnetic field: [18]
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
The quantity mv of above is the ordinary non-relativistic momentum of the particle and m its rest mass. The four-momentum is useful in relativistic calculations because it is a Lorentz covariant vector. This means that it is easy to keep track of how it transforms under Lorentz transformations.
A free particle with mass in non-relativistic quantum mechanics is described by the free Schrödinger equation: (,) = (,) where ψ is the wavefunction of the particle at position r and time t . The solution for a particle with momentum p or wave vector k , at angular frequency ω or energy E , is given by a complex plane wave :
The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.
All particles exist in states that may be characterized by a certain energy, momentum and mass.In most of the Standard Model of particle physics, particles of the same type cannot exist in another state with all these properties scaled up or down by a common factor – electrons, for example, always have the same mass regardless of their energy or momentum.