Search results
Results from the WOW.Com Content Network
The density of states related to volume V and N countable energy levels is defined as: = = (()). Because the smallest allowed change of momentum for a particle in a box of dimension and length is () = (/), the volume-related density of states for continuous energy levels is obtained in the limit as ():= (()), Here, is the spatial dimension of the considered system and the wave vector.
Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ ( r ) {\displaystyle \rho ({\textbf {r}})} or n ( r ) {\displaystyle n ...
The density of states function g(E) is defined as the number of electronic states per unit volume, per unit energy, for electron energies near E. The density of states function is important for calculations of effects based on band theory. In Fermi's Golden Rule, a calculation for the rate of optical absorption, it provides both the number of ...
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
In semiconductors with non-simple band structures, this relationship is used to define an effective mass, known as the density of states effective mass of electrons. The name "density of states effective mass" is used since the above expression for N C is derived via the density of states for a parabolic band.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping.Using band theory, the electron density, is number of electrons per unit volume in the conduction band.
Then the electron mobility μ is defined as =. Electron mobility is almost always specified in units of cm 2 /(V⋅s). This is different from the SI unit of mobility, m 2 /(V⋅s). They are related by 1 m 2 /(V⋅s) = 10 4 cm 2 /(V⋅s). Conductivity is proportional to the product of mobility and carrier concentration. For example, the same ...
In quantum mechanics, a density matrix (or density operator) is a matrix that describes an ensemble [1] of physical systems as quantum states (even if the ensemble contains only one system). It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule .