Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
The array, set and dictionary binary types are made up of pointers - the objref and keyref entries - that index into an object table in the file. This means that binary plists can capture the fact that - for example - a separate array and dictionary serialized into a file both have the same data element stored in them.
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
It can convert a wide range of complex data structures, including dict, array, numpy ndarray, into JData representations and export the data as JSON or UBJSON files. The BJData Python module, pybj, [4] enabling reading/writing BJData/UBJSON files, is also available on PyPI, Debian/Ubuntu and GitHub.
The average rate on a 30-year mortgage in the U.S. eased again this week, slipping to its lowest level since late October. The rate dropped to 6.69% from 6.81% last week, mortgage buyer Freddie ...
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.