enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  4. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    C++ template library for linear algebra; includes various decompositions and factorisations; syntax is similar to MATLAB. ATLAS: R. Clint Whaley et al. C 2001 3.10.3 / 07.2016 Free BSD Automatically tuned implementation of BLAS. Also includes LU and Cholesky decompositions. Blaze [4] K. Iglberger et al. C++ 2012 3.8 / 08.2020 Free BSD

  5. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    defines a variable named array (or assigns a new value to an existing variable with the name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the initial value), increments with each step from the previous value by 2 (the increment value), and stops once it reaches (or is about to exceed) 9 ...

  6. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    BLAS functionality is categorized into three sets of routines called "levels", which correspond to both the chronological order of definition and publication, as well as the degree of the polynomial in the complexities of algorithms; Level 1 BLAS operations typically take linear time, O(n), Level 2 operations quadratic time and Level 3 operations cubic time. [19]

  7. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number through of the original system are satisfied; it only remains to satisfy equation number .

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.

  9. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    When solving systems of equations, b is usually treated as a vector with a length equal to the height of matrix A. In matrix inversion however, instead of vector b , we have matrix B , where B is an n -by- p matrix, so that we are trying to find a matrix X (also a n -by- p matrix):