Search results
Results from the WOW.Com Content Network
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)
The following examples compute interval machine epsilon in the sense of the spacing of the floating point numbers at 1 rather than in the sense of the unit roundoff. Note that results depend on the particular floating-point format used, such as float , double , long double , or similar as supported by the programming language, the compiler, and ...
Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.
There have been several instances though out history in which major disasters have occurred as a result of round-off errors. One example of this occurred during the Gulf War with the American Patriot Missile defense system (MIM-104 Patriot). The system was programmed with 24 bits; therefore, when a number was stored, it was chopped after 24 bits.
In the example below, it would be desirable to interchange the two rows because the current pivot element 30 is larger than 5.291 but it is relatively small compared with the other entries in its row. Without row interchange in this case, rounding errors will be propagated as in the previous example.
Catastrophic cancellation may happen even if the difference is computed exactly, as in the example above—it is not a property of any particular kind of arithmetic like floating-point arithmetic; rather, it is inherent to subtraction, when the inputs are approximations themselves.
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...