enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  3. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  4. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The polar second moment of area appears in the formulae that describe torsional stress and angular displacement. Torsional stresses: τ = T r J z {\displaystyle \tau ={\frac {T\,r}{J_{z}}}} where τ {\displaystyle \tau } is the torsional shear stress, T {\displaystyle T} is the applied torque, r {\displaystyle r} is the distance from the ...

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  6. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  7. Membrane analogy - Wikipedia

    en.wikipedia.org/wiki/Membrane_analogy

    Using the membrane analogy, any thin-walled cross section can be "stretched out" into a rectangle without affecting the stress distribution under torsion. The maximum shear stress, therefore, occurs at the edge of the midpoint of the stretched cross section, and is equal to /, where T is the torque applied, b is the length of the stretched ...

  8. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The attempts to provide precise expressions were made by many scientists, including Stephen Timoshenko, [12] Raymond D. Mindlin, [13] G. R. Cowper, [14] G. R., 1966, "The Shear Coefficient in Timoshenko’s Beam Theory", J. Appl. Mech., Vol. 33, No.2, pp. 335–340.</ref> N. G. Stephen, [15] J. R. Hutchinson [16] etc. (see also the derivation ...

  9. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    One may be able to determine a priori that, in some parts of the system, the stress will be of a certain type, such as uniaxial tension or compression, simple shear, isotropic compression or tension, torsion, bending, etc. In those parts, the stress field may then be represented by fewer than six numbers, and possibly just one.