enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    The shear stress at a point within a shaft is: = Note that the highest shear stress occurs on the surface of the shaft, where the radius is maximum. High stresses at the surface may be compounded by stress concentrations such as rough spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the maximum stress ...

  3. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  4. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The polar second moment of area appears in the formulae that describe torsional stress and angular displacement. Torsional stresses: τ = T r J z {\displaystyle \tau ={\frac {T\,r}{J_{z}}}} where τ {\displaystyle \tau } is the torsional shear stress, T {\displaystyle T} is the applied torque, r {\displaystyle r} is the distance from the ...

  5. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  6. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  7. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    is the average shear stress, is the shear force applied to each section of the part, and is the area of the section. [1] Average shear stress can also be defined as the total force of as = This is only the average stress, actual stress distribution is not uniform.

  8. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. [1]

  9. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).