Search results
Results from the WOW.Com Content Network
If the pressure is increased by the addition of an inert gas, then neither the composition at equilibrium nor the equilibrium constant are appreciably affected (because the partial pressures remain constant, assuming an ideal-gas behaviour of all gases involved). However, the composition at equilibrium will depend appreciably on pressure when:
[5] [21] A rise in the P CO 2 in the arterial blood plasma above 5.3 kPa (40 mmHg) reflexly causes an increase in the rate and depth of breathing. Normal breathing is resumed when the partial pressure of carbon dioxide has returned to 5.3 kPa. [8] The converse happens if the partial pressure of carbon dioxide falls below the normal range.
In response to a lowering of the plasma sodium concentration, or to a fall in the arterial blood pressure, the juxtaglomerular cells release renin into the blood. [ 64 ] [ 65 ] [ 66 ] Renin is an enzyme which cleaves a decapeptide (a short protein chain, 10 amino acids long) from a plasma α-2-globulin called angiotensinogen .
The concentration at saturation depends on the partial pressure of the gas in the supply and of the solubility of the gas in that solvent, under those conditions. If the external partial pressure of the gas (in the lungs) is then reduced, more gas will diffuse out than in. A condition known as supersaturation may develop.
The Kell antigen system (also known as the Kell–Cellano system) is a human blood group system, that is, a group of antigens on the human red blood cell surface which are important determinants of blood type and are targets for autoimmune or alloimmune diseases which destroy red blood cells. The Kell antigens are K, k, Kp a, Kp b, Js a and Js ...
DP = Diastolic blood pressure; PP = Pulse pressure which is systolic pressure minus diastolic pressure. [34] Differences in mean blood pressure are responsible for blood flow from one location to another in the circulation. The rate of mean blood flow depends on both blood pressure and the resistance to flow presented by the blood vessels.
The concentration of the anesthetic in blood includes the portion that is undissolved in plasma and the portion that is dissolved (bound to plasma proteins). The more soluble the inhaled anesthetic is in blood compared to in air, the more it binds to plasma proteins in the blood and the higher the blood–gas partition coefficient.
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant